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Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?

▶ Situations we are in
(this is not really
automatizable)

▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …
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Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS

▶ A tree is a pair that contains
▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩
▶ Recursive definition: “A tree is something and a tree”

▶ Recursion is an important ingredient in many algorithms and data
structures

▶ If the tree has labels on the edges, the pair becomes a triple
▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩
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Decision Trees

Decision Trees
Prediction Model

▶ Each non-leaf node in the tree represents one feature
▶ Each leaf node represents a class label
▶ Each branch at this node represents one possible feature value

▶ Number of branches = |v(fi)| (number of possible values)

▶ Make a prediction for x:
1. Start at root node
2. If it’s a leaf node

▶ assign the class label
3. Else

▶ Check node which feature is to be tested (fi)
▶ Extract fi(x)
▶ Follow corresponding branch
▶ Go to 2
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Decision Trees

Decision Trees
Example Task

▶ Dtrain: A deck of 12 playing cards (selected out of 52)
▶ Target classes: Their symbols♣♠♢♡
▶ Features

▶ f1: Does it show a number? v(f1) = {0, 1}
▶ f2: Is it black or red? v(f2) = {b, r}
▶ f3: Is it even, odd, or a face card? v(f3) = {e, o, f}

Disclaimer: This task is artificial, because there is no connection of the
features and the target classes in a full deck. It only serves to illustrate the
algorithm.
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Decision Trees

Decision Trees
Example Task

f1: Number?

f2: Color? f3: Even/Odd/Face?

f3: Even/Odd/Face?

♠ ♢ ♡

♢ ♠ ♢ ♣

f1(x) = 1? f1(x) = 0?

f2(x) = black? f2(x) = red?

f3(x) = e? f3(x) = o?
f3(x) = f?

f3(x) = e?

f3(x) = o?

f3(x) = f?

Figure: Example Prediction Model. The model is entirely made up and is not
expected to perform well, but it can be used for classification right away.
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Decision Trees

Decision Trees
Learning Algorithm

▶ Core idea: The tree represents splits of the training data
1. Start with the full data set Dtrain as D
2. If D only contains members of a single class:

▶ Done.
3. Else:

▶ Select a feature fi
▶ Extract feature values of all instances in D
▶ Split the data set according to fi: D = Dv ∪ Dw ∪ Du . . .
▶ Go back to 2

▶ Remaining question: How to select features?
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Decision Trees

Decision Trees
Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)

▶ Rule: Always select the feature with the highest information gain (IG)
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Decision Trees

Decision Trees
Entropy (Shannon 1948)

H(X) = −
n∑

i=1
p(xi) logb p(xi)

Examples

▶ H([4]) = −4
4 logb

4
4 = 0

▶ H([3, 1]) = −3
4 logb

3
4 −

1
4 logb

1
4 = 0.562

▶ H([2, 2]) = 0.693
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Decision Trees

Decision Trees
Feature Selection (2)

{♠♠♠♡}

{♡}{♠♠♠}

H({♠♠♠♡}) = H([3, 1])
= 0.562

H({♡}) = H([1]) = 0
H({♠♠♠}) = H([3])

= 0

{♠♠♠♡}

{♠}{♠♠♡}

H({♠♠♠♡}) = H([3, 1])
= 0.562

H({♠}) = H([1]) = 0
H({♠♠♡}) = H([2, 1])

= 0.637
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Decision Trees

Decision Trees
Feature Selection (3)

{♠♠♠♡}

{♡}{♠♠♠}

H({♠♠♠♡}) = 0.562
H({♡}) = 0

H({♠♠♠}) = 0

{♠♠♠♡}

{♠}{♠♠♡}

H({♠♠♠♡}) = 0.562
H({♠}) = 0

H({♠♠♡}) = 0.637

IG(f1) = H({♠♠♠♡})−�(
H({♡}),H({♠♠♠})

)
= 0.562− 0 = 0.562

IG(f2) = H({♠♠♠♡})−�(
H({♠}),H({♠♠♡})

)
= 0.562− (

3
40.637+

1
40)

= 0.562− 0.562− 0.477 = 0.085
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Decision Trees

Let’s Train a Decision Tree
Initial Situation

C = {♣♠♢♡}
Dtrain = {7♣,A♠,Q♠,K♠, J♠, 5♢,

8♢, 3♢, 7♢, 3♡, 7♡, 5♡}

Class Frequency %

♠ 4 33.3
♢ 4 33.3
♡ 3 25
♣ 1 8.3

H(♠♠♠♠♢♢♢♢♡♡♡♣) = H([4, 4, 3, 1])
= 1.286057
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Decision Trees

Let’s Train a Decision Tree
f1: Does it show a number?

▶ Splitting D according to f1 yields
▶ {7♣, 5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good?

▶ Calculate entropies
▶ H([4, 3, 1]) = 0.9743148
▶ H([4]) = 0

▶ Weighted average of entropy
▶ 8

12H([4, 3, 1]) + 4
12H([4]) = 0.6495432

▶ Calculate information gain for feature f1
▶ IG(f1) = H([4, 4, 3, 1])− 0.6495432 = 0.6365142
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Decision Trees

Let’s Train a Decision Tree
f2: Is it black or red?

▶ Splitting D according to f2 yields
▶ {5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {7♣,A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1?

▶ Calculate entropies
▶ H([4, 3]) = 0.6829081
▶ H([4, 1]) = 0.5004024

▶ Weighted average of entropy
▶ 7

12H([4, 3]) + 5
12H([4, 1]) = 0.6068641

▶ Calculate information gain for feature f2
▶ IG(f2) = H([4, 4, 3, 1])− 0.6068641 = 0.6791933
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Decision Trees

Let’s Train a Decision Tree
f3: Is it even, odd, or a face?

▶ Splitting D according to f3 yields
▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1 or f2?

▶ Calculate entropies
▶ H([1]) = 0
▶ H([1, 3, 3]) = 1.004242
▶ H([4]) = 0

▶ Weighted average of entropies
▶ 1

12H([1]) + 7
12H([1, 3, 3]) + 4

12H([0]) = 0.5858081
▶ Calculate information gain for feature f3

▶ IG(f3) = H([4, 4, 3, 1])− 0.5858081 = 0.7002492
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Decision Trees

Let’s Train a Decision Tree
First Feature

Feature Information gain

f1 0.637
f2 0.679
f3 0.7

▶ The algorithm selects f3 as the first feature!
▶ Next, we continue recursivelywith each sub set

▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}
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Decision Trees

Let’s Train a Decision Tree
Final Tree

f3: Even/Odd/Face?

f2: Color?♢ ♠

♣ ♢/♡

f3(x) = e?

f3(x) = f?

f3(x) = o?

f2(x) = black? f2(x) = red?

Figure: Final prediction model according to the training we did in class
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Decision Trees

Decision Trees
Summary

▶ Classification algorithm
▶ Built around trees, recursive learning and prediction
▶ Pros

▶ Highly transparent
▶ Reasonably fast
▶ Dependencies between features can be incorporated into the model

▶ Cons
▶ Often not very good
▶ No pairwise dependencies
▶ May lead to overfitting
▶ Only nominal features

▶ Variants exist
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Evaluation (again)

Section 2

Evaluation (again)
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Evaluation (again)

Evaluation (again)
Precision and Recall

▶ Accuracy is a single number for the entire classification
▶ Do some of the classes fare better than others?
▶ There are two metrics for this: Precision and Recall

▶ Both are calculated per class (and can be averaged again)

all items

gold: c system: c

Figure: Identifying true/false positives/negatives
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Evaluation (again)

Evaluation
Precision and Recall

all items

gold: c system: c

true
positives

true negatives

false
positives

false
negatives

true positives Correctly identified items of class c

true negatives Correctly identified items of other classes

false positives System predicts c, but it’s another class

false negatives System predicts something else, but it’s c
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Evaluation (again)

Evaluation
Precision and Recall

all items

gold: c system: c

true
positives

false
positives

false
negatives

precision Howmany of the items predicted as c are actually correct?
P = tp

tp+fp

recall Howmany of the items that are c are actually identified?
R = tp

tp+fn
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Evaluation (again)

Evaluation
Precision and Recall

precision Howmany of the items predicted as c are actually correct?

recall Howmany of the items that are in class c are actually found
by the system?

▶ Precision and recall measure different kinds of errors the systems
make
▶ Precision errors are often easier to spot for humans
▶ Recall errors are hurtful, if only instances of one class are looked at or

analyzed – missing instances will never be found

▶ Average P/R values over all classes are often given
▶ Sometimes combined into an f1-score

▶ f1 = 2 precision∗recall
precision+recall▶ ‘harmonic mean’ between the two
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Naive Bayes

Section 3

Naive Bayes
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Naive Bayes

Naive Bayes
Prediction Model

▶ Probabilistic model
(i.e., takes probabilities into account)

▶ Probabilities are estimated on training data (relative frequencies)
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Naive Bayes

Naive Bayes
Prediction Model

prediction(x) = argmax
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

(i.e., we calculate the probability for each possible class c, given the
feature values of the item x, and we assign most probably class)
In our case:

prediction(x) = argmax
c∈{♣♠♡♢}

p(c|f1(x), f2(x), . . . , fn(x))

▶ argmax: Select the argument that maximizes the expression
▶ How exactly do we calculate p(c|f1(x), f2(x), . . . , fn(x))?
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Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =

p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)
Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!
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Naive Bayes

Naive Bayes
Learning Algorithm

▶ Very simple
1. For each feature fi ∈ F

▶ Count frequency tables from the training set:

C (classes)
c1 c2 … cm

v(fi)

a 3 2 …
b 5 7 …
c 0 1 …∑

8 10

2. Calculate conditional probabilities
▶ Divide each number by the sum of the entire column
▶ E.g., p(a|c1) = 3

3+5+0 p(b|c2) = 7
2+7+1
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Naive Bayes

Naive Bayes – Example Task
Feature f1: Number?

C (classes)
♣ ♠ ♡ ♢

v(f1)

y 1 0 3 4
n 0 4 0 0∑

1 4 3 4

p(f1 = y|♠) = 0 p(f1 = n|♠) = 1
p(f1 = y|♢) = 1 p(f1 = n|♢) = 0

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 31 / 39



Naive Bayes

Naive Bayes – Example Task
Feature f2: Color?

C (classes)
♣ ♠ ♡ ♢

v(f2)

b 0 0 3 4
r 1 4 0 0∑

1 4 3 4

p(f2 = r|♠) = 0 p(f2 = b|♠) = 1
p(f2 = r|♢) = 1 p(f2 = b|♢) = 0
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Naive Bayes

Naive Bayes – Example Task
Feature f3: Odd/Even/Face?

C (classes)
♣ ♠ ♡ ♢

v(f3)

o 1 0 3 3
e 0 0 0 1
f 0 4 0 0∑

1 4 3 4

p(f3 = o|♠) = 0 p(f3 = e|♠) = 0 p(f3 = f|♠) = 1

p(f3 = o|♢) = 3
4 p(f3 = e|♢) = 1

4 p(f3 = f|♢) = 0
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Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(K♠) = argmax
c∈{♠♣♡♢}

p(c|n, b, f)

p(♣|n, b, f) = p(f1 = n|♣) ∗ p(f2 = b|♣) ∗ p(f3 = f|♣)
= 0

p(♡|n, b, f) = p(f1 = n|♡) ∗ p(f2 = b|♡) ∗ p(f3 = f|♡)
= 0

p(♠|n, b, f) = p(f1 = n|♠) ∗ p(f2 = b|♠) ∗ p(f3 = f|♠)
= 1 ∗ 1 ∗ 1 = 1

We predict♠
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Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(6♢) = argmax
c∈{♠♣♡♢}

p(c|y, r, e)

p(♣|y, r, e) = p(f1 = y|♣) ∗ p(f2 = r|♣) ∗ p(f3 = e|♣)
= 0

p(♡|y, r, e) = p(f1 = y|♡) ∗ p(f2 = r|♡) ∗ p(f3 = e|♡)
= 1 ∗ 1 ∗ 0 = 0

p(♢|y, r, e) = p(f1 = y|♢) ∗ p(f2 = r|♢) ∗ p(f3 = e|♢)

= 1 ∗ 1 ∗ 1
4 =

1
4

We predict♢
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Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(K♢) = argmax
c∈{♠♣♡♢}

p(c|n, r, f)

p(♣|n, r, f) = p(f1 = y|♣) ∗ p(f2 = r|♣) ∗ p(f3 = e|♣)
= 0

p(♡|n, r, f) = p(f1 = y|♡) ∗ p(f2 = r|♡) ∗ p(f3 = e|♡)
= 0

p(♢|n, r, f) = p(f1 = y|♢) ∗ p(f2 = r|♢) ∗ p(f3 = e|♢)
= 0

Oops, all probabilities are zero

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 36 / 39



Naive Bayes

Naive Bayes
Smoothing

▶ Whenever multiplication is involved, zeros are dangerous
▶ Smoothing is used to avoid zeros
▶ Different possibilities
▶ Simple: Add something to the probabilities

▶ xi+a
N+ad

▶ E.g., p(f3 = e|♠) = 0+1
4+1∗4
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Naive Bayes

Naive Bayes

▶ ‘Naive’: Assuming feature independence is usually wrong
▶ Even in our toy example, f1 and f3 are highly dependent

▶ Pros
▶ Easy to implement, fast
▶ Small models

▶ Cons
▶ Naive: Feature dependence not modeled
▶ Fragile for unseen data (without smoothing)
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Naive Bayes
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