
Machine Learning Algorithms
Learning Machine Learning

Nils Reiter

September 26-27, 2018

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 1 / 39

Overview

Decision Trees

Evaluation (again)

Naive Bayes

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 2 / 39

Decision Trees

Section 1

Decision Trees

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 3 / 39

Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?

▶ Situations we are in
(this is not really
automatizable)

▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 4 / 39

Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?

▶ Situations we are in
(this is not really
automatizable)

▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 4 / 39

Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?
▶ Situations we are in

(this is not really
automatizable)

▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 4 / 39

Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?
▶ Situations we are in

(this is not really
automatizable)

▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 4 / 39

Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?
▶ Situations we are in

(this is not really
automatizable)

▶ What are the features?
▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 4 / 39

Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS

▶ A tree is a pair that contains
▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩
▶ Recursive definition: “A tree is something and a tree”

▶ Recursion is an important ingredient in many algorithms and data
structures

▶ If the tree has labels on the edges, the pair becomes a triple
▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 5 / 39

Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS
▶ A tree is a pair that contains

▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩
▶ Recursive definition: “A tree is something and a tree”

▶ Recursion is an important ingredient in many algorithms and data
structures

▶ If the tree has labels on the edges, the pair becomes a triple
▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 5 / 39

Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS
▶ A tree is a pair that contains

▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩

▶ Recursive definition: “A tree is something and a tree”
▶ Recursion is an important ingredient in many algorithms and data

structures
▶ If the tree has labels on the edges, the pair becomes a triple

▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩

v

w u

s

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 5 / 39

Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS
▶ A tree is a pair that contains

▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩
▶ Recursive definition: “A tree is something and a tree”

▶ Recursion is an important ingredient in many algorithms and data
structures

▶ If the tree has labels on the edges, the pair becomes a triple
▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩

v

w u

s

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 5 / 39

Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS
▶ A tree is a pair that contains

▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩
▶ Recursive definition: “A tree is something and a tree”

▶ Recursion is an important ingredient in many algorithms and data
structures

▶ If the tree has labels on the edges, the pair becomes a triple
▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩

v

w u

s

lw lu

ls

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 5 / 39

Decision Trees

Decision Trees
Trees

▶ Well-established data structure in CS
▶ A tree is a pair that contains

▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees

▶ Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {s, ∅}⟩}⟩
▶ Recursive definition: “A tree is something and a tree”

▶ Recursion is an important ingredient in many algorithms and data
structures

▶ If the tree has labels on the edges, the pair becomes a triple
▶ ⟨v, lv, {⟨w, lw, ∅⟩, ⟨u, lu{s, ∅}⟩}⟩

v

w u

s

lw lu

ls

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 5 / 39

Decision Trees

Decision Trees
Prediction Model

▶ Each non-leaf node in the tree represents one feature
▶ Each leaf node represents a class label
▶ Each branch at this node represents one possible feature value

▶ Number of branches = |v(fi)| (number of possible values)

▶ Make a prediction for x:
1. Start at root node
2. If it’s a leaf node

▶ assign the class label
3. Else

▶ Check node which feature is to be tested (fi)
▶ Extract fi(x)
▶ Follow corresponding branch
▶ Go to 2

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 6 / 39

Decision Trees

Decision Trees
Prediction Model

▶ Each non-leaf node in the tree represents one feature
▶ Each leaf node represents a class label
▶ Each branch at this node represents one possible feature value

▶ Number of branches = |v(fi)| (number of possible values)
▶ Make a prediction for x:

1. Start at root node
2. If it’s a leaf node

▶ assign the class label
3. Else

▶ Check node which feature is to be tested (fi)
▶ Extract fi(x)
▶ Follow corresponding branch
▶ Go to 2

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 6 / 39

Decision Trees

Decision Trees
Example Task

▶ Dtrain: A deck of 12 playing cards (selected out of 52)
▶ Target classes: Their symbols♣♠♢♡
▶ Features

▶ f1: Does it show a number? v(f1) = {0, 1}
▶ f2: Is it black or red? v(f2) = {b, r}
▶ f3: Is it even, odd, or a face card? v(f3) = {e, o, f}

Disclaimer: This task is artificial, because there is no connection of the
features and the target classes in a full deck. It only serves to illustrate the
algorithm.

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 7 / 39

Decision Trees

Decision Trees
Example Task

f1: Number?

f2: Color? f3: Even/Odd/Face?

f3: Even/Odd/Face?

♠ ♢ ♡

♢ ♠ ♢ ♣

f1(x) = 1? f1(x) = 0?

f2(x) = black? f2(x) = red?

f3(x) = e? f3(x) = o?
f3(x) = f?

f3(x) = e?

f3(x) = o?

f3(x) = f?

Figure: Example Prediction Model. The model is entirely made up and is not
expected to perform well, but it can be used for classification right away.

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 8 / 39

Decision Trees

Decision Trees
Learning Algorithm

▶ Core idea: The tree represents splits of the training data
1. Start with the full data set Dtrain as D
2. If D only contains members of a single class:

▶ Done.
3. Else:

▶ Select a feature fi
▶ Extract feature values of all instances in D
▶ Split the data set according to fi: D = Dv ∪ Dw ∪ Du . . .
▶ Go back to 2

▶ Remaining question: How to select features?

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 9 / 39

Decision Trees

Decision Trees
Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)

▶ Rule: Always select the feature with the highest information gain (IG)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 10 / 39

Decision Trees

Decision Trees
Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)

▶ Rule: Always select the feature with the highest information gain (IG)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 10 / 39

Decision Trees

Decision Trees
Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}← better split!

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)

▶ Rule: Always select the feature with the highest information gain (IG)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 10 / 39

Decision Trees

Decision Trees
Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}← better split!

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)

▶ Rule: Always select the feature with the highest information gain (IG)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 10 / 39

Decision Trees

Decision Trees
Entropy (Shannon 1948)

H(X) = −
n∑

i=1
p(xi) logb p(xi)

Examples

▶ H([4]) = −4
4 logb

4
4 = 0

▶ H([3, 1]) = −3
4 logb

3
4 −

1
4 logb

1
4 = 0.562

▶ H([2, 2]) = 0.693

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 11 / 39

Decision Trees

Decision Trees
Feature Selection (2)

{♠♠♠♡}

{♡}{♠♠♠}

H({♠♠♠♡}) = H([3, 1])
= 0.562

H({♡}) = H([1]) = 0
H({♠♠♠}) = H([3])

= 0

{♠♠♠♡}

{♠}{♠♠♡}

H({♠♠♠♡}) = H([3, 1])
= 0.562

H({♠}) = H([1]) = 0
H({♠♠♡}) = H([2, 1])

= 0.637

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 12 / 39

Decision Trees

Decision Trees
Feature Selection (3)

{♠♠♠♡}

{♡}{♠♠♠}

H({♠♠♠♡}) = 0.562
H({♡}) = 0

H({♠♠♠}) = 0

{♠♠♠♡}

{♠}{♠♠♡}

H({♠♠♠♡}) = 0.562
H({♠}) = 0

H({♠♠♡}) = 0.637

IG(f1) = H({♠♠♠♡})−�(
H({♡}),H({♠♠♠})

)
= 0.562− 0 = 0.562

IG(f2) = H({♠♠♠♡})−�(
H({♠}),H({♠♠♡})

)
= 0.562− (

3
40.637+

1
40)

= 0.562− 0.562− 0.477 = 0.085
Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 13 / 39

Decision Trees

Let’s Train a Decision Tree
Initial Situation

C = {♣♠♢♡}
Dtrain = {7♣,A♠,Q♠,K♠, J♠, 5♢,

8♢, 3♢, 7♢, 3♡, 7♡, 5♡}

Class Frequency %

♠ 4 33.3
♢ 4 33.3
♡ 3 25
♣ 1 8.3

H(♠♠♠♠♢♢♢♢♡♡♡♣) = H([4, 4, 3, 1])
= 1.286057

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 14 / 39

Decision Trees

Let’s Train a Decision Tree
Initial Situation

C = {♣♠♢♡}
Dtrain = {7♣,A♠,Q♠,K♠, J♠, 5♢,

8♢, 3♢, 7♢, 3♡, 7♡, 5♡}

Class Frequency %

♠ 4 33.3
♢ 4 33.3
♡ 3 25
♣ 1 8.3

H(♠♠♠♠♢♢♢♢♡♡♡♣) = H([4, 4, 3, 1])
= 1.286057

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 14 / 39

Decision Trees

Let’s Train a Decision Tree
Initial Situation

C = {♣♠♢♡}
Dtrain = {7♣,A♠,Q♠,K♠, J♠, 5♢,

8♢, 3♢, 7♢, 3♡, 7♡, 5♡}

Class Frequency %

♠ 4 33.3
♢ 4 33.3
♡ 3 25
♣ 1 8.3

H(♠♠♠♠♢♢♢♢♡♡♡♣) = H([4, 4, 3, 1])
= 1.286057

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 14 / 39

Decision Trees

Let’s Train a Decision Tree
f1: Does it show a number?

▶ Splitting D according to f1 yields
▶ {7♣, 5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good?

▶ Calculate entropies
▶ H([4, 3, 1]) = 0.9743148
▶ H([4]) = 0

▶ Weighted average of entropy
▶ 8

12H([4, 3, 1]) + 4
12H([4]) = 0.6495432

▶ Calculate information gain for feature f1
▶ IG(f1) = H([4, 4, 3, 1])− 0.6495432 = 0.6365142

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 15 / 39

Decision Trees

Let’s Train a Decision Tree
f1: Does it show a number?

▶ Splitting D according to f1 yields
▶ {7♣, 5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good?
▶ Calculate entropies

▶ H([4, 3, 1]) = 0.9743148
▶ H([4]) = 0

▶ Weighted average of entropy
▶ 8

12H([4, 3, 1]) + 4
12H([4]) = 0.6495432

▶ Calculate information gain for feature f1
▶ IG(f1) = H([4, 4, 3, 1])− 0.6495432 = 0.6365142

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 15 / 39

Decision Trees

Let’s Train a Decision Tree
f1: Does it show a number?

▶ Splitting D according to f1 yields
▶ {7♣, 5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good?
▶ Calculate entropies

▶ H([4, 3, 1]) = 0.9743148
▶ H([4]) = 0

▶ Weighted average of entropy
▶ 8

12H([4, 3, 1]) + 4
12H([4]) = 0.6495432

▶ Calculate information gain for feature f1
▶ IG(f1) = H([4, 4, 3, 1])− 0.6495432 = 0.6365142

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 15 / 39

Decision Trees

Let’s Train a Decision Tree
f1: Does it show a number?

▶ Splitting D according to f1 yields
▶ {7♣, 5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good?
▶ Calculate entropies

▶ H([4, 3, 1]) = 0.9743148
▶ H([4]) = 0

▶ Weighted average of entropy
▶ 8

12H([4, 3, 1]) + 4
12H([4]) = 0.6495432

▶ Calculate information gain for feature f1
▶ IG(f1) = H([4, 4, 3, 1])− 0.6495432 = 0.6365142

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 15 / 39

Decision Trees

Let’s Train a Decision Tree
f2: Is it black or red?

▶ Splitting D according to f2 yields
▶ {5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {7♣,A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1?

▶ Calculate entropies
▶ H([4, 3]) = 0.6829081
▶ H([4, 1]) = 0.5004024

▶ Weighted average of entropy
▶ 7

12H([4, 3]) + 5
12H([4, 1]) = 0.6068641

▶ Calculate information gain for feature f2
▶ IG(f2) = H([4, 4, 3, 1])− 0.6068641 = 0.6791933

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 16 / 39

Decision Trees

Let’s Train a Decision Tree
f2: Is it black or red?

▶ Splitting D according to f2 yields
▶ {5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {7♣,A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1?
▶ Calculate entropies

▶ H([4, 3]) = 0.6829081
▶ H([4, 1]) = 0.5004024

▶ Weighted average of entropy
▶ 7

12H([4, 3]) + 5
12H([4, 1]) = 0.6068641

▶ Calculate information gain for feature f2
▶ IG(f2) = H([4, 4, 3, 1])− 0.6068641 = 0.6791933

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 16 / 39

Decision Trees

Let’s Train a Decision Tree
f2: Is it black or red?

▶ Splitting D according to f2 yields
▶ {5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {7♣,A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1?
▶ Calculate entropies

▶ H([4, 3]) = 0.6829081
▶ H([4, 1]) = 0.5004024

▶ Weighted average of entropy
▶ 7

12H([4, 3]) + 5
12H([4, 1]) = 0.6068641

▶ Calculate information gain for feature f2
▶ IG(f2) = H([4, 4, 3, 1])− 0.6068641 = 0.6791933

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 16 / 39

Decision Trees

Let’s Train a Decision Tree
f2: Is it black or red?

▶ Splitting D according to f2 yields
▶ {5♢, 8♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {7♣,A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1?
▶ Calculate entropies

▶ H([4, 3]) = 0.6829081
▶ H([4, 1]) = 0.5004024

▶ Weighted average of entropy
▶ 7

12H([4, 3]) + 5
12H([4, 1]) = 0.6068641

▶ Calculate information gain for feature f2
▶ IG(f2) = H([4, 4, 3, 1])− 0.6068641 = 0.6791933

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 16 / 39

Decision Trees

Let’s Train a Decision Tree
f3: Is it even, odd, or a face?

▶ Splitting D according to f3 yields
▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1 or f2?

▶ Calculate entropies
▶ H([1]) = 0
▶ H([1, 3, 3]) = 1.004242
▶ H([4]) = 0

▶ Weighted average of entropies
▶ 1

12H([1]) + 7
12H([1, 3, 3]) + 4

12H([0]) = 0.5858081
▶ Calculate information gain for feature f3

▶ IG(f3) = H([4, 4, 3, 1])− 0.5858081 = 0.7002492

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 17 / 39

Decision Trees

Let’s Train a Decision Tree
f3: Is it even, odd, or a face?

▶ Splitting D according to f3 yields
▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1 or f2?
▶ Calculate entropies

▶ H([1]) = 0
▶ H([1, 3, 3]) = 1.004242
▶ H([4]) = 0

▶ Weighted average of entropies
▶ 1

12H([1]) + 7
12H([1, 3, 3]) + 4

12H([0]) = 0.5858081
▶ Calculate information gain for feature f3

▶ IG(f3) = H([4, 4, 3, 1])− 0.5858081 = 0.7002492

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 17 / 39

Decision Trees

Let’s Train a Decision Tree
f3: Is it even, odd, or a face?

▶ Splitting D according to f3 yields
▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1 or f2?
▶ Calculate entropies

▶ H([1]) = 0
▶ H([1, 3, 3]) = 1.004242
▶ H([4]) = 0

▶ Weighted average of entropies
▶ 1

12H([1]) + 7
12H([1, 3, 3]) + 4

12H([0]) = 0.5858081

▶ Calculate information gain for feature f3
▶ IG(f3) = H([4, 4, 3, 1])− 0.5858081 = 0.7002492

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 17 / 39

Decision Trees

Let’s Train a Decision Tree
f3: Is it even, odd, or a face?

▶ Splitting D according to f3 yields
▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

▶ Intuitively: Is this good? Better than f1 or f2?
▶ Calculate entropies

▶ H([1]) = 0
▶ H([1, 3, 3]) = 1.004242
▶ H([4]) = 0

▶ Weighted average of entropies
▶ 1

12H([1]) + 7
12H([1, 3, 3]) + 4

12H([0]) = 0.5858081
▶ Calculate information gain for feature f3

▶ IG(f3) = H([4, 4, 3, 1])− 0.5858081 = 0.7002492

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 17 / 39

Decision Trees

Let’s Train a Decision Tree
First Feature

Feature Information gain

f1 0.637
f2 0.679
f3 0.7

▶ The algorithm selects f3 as the first feature!
▶ Next, we continue recursivelywith each sub set

▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 18 / 39

Decision Trees

Let’s Train a Decision Tree
First Feature

Feature Information gain

f1 0.637
f2 0.679
f3 0.7

▶ The algorithm selects f3 as the first feature!

▶ Next, we continue recursivelywith each sub set
▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 18 / 39

Decision Trees

Let’s Train a Decision Tree
First Feature

Feature Information gain

f1 0.637
f2 0.679
f3 0.7

▶ The algorithm selects f3 as the first feature!
▶ Next, we continue recursivelywith each sub set

▶ {8♢}
▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 18 / 39

Decision Trees

Let’s Train a Decision Tree
First Feature

Feature Information gain

f1 0.637
f2 0.679
f3 0.7

▶ The algorithm selects f3 as the first feature!
▶ Next, we continue recursivelywith each sub set

▶ {8♢}
✓ No further action needed!

▶ {7♣, 5♢, 3♢, 7♢, 3♡, 7♡, 5♡}
▶ {A♠,Q♠,K♠, J♠}

✓ No further action needed!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 18 / 39

Decision Trees

Let’s Train a Decision Tree
Final Tree

f3: Even/Odd/Face?

f2: Color?♢ ♠

♣ ♢/♡

f3(x) = e?

f3(x) = f?

f3(x) = o?

f2(x) = black? f2(x) = red?

Figure: Final prediction model according to the training we did in class

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 19 / 39

Decision Trees

Decision Trees
Summary

▶ Classification algorithm
▶ Built around trees, recursive learning and prediction
▶ Pros

▶ Highly transparent
▶ Reasonably fast
▶ Dependencies between features can be incorporated into the model

▶ Cons
▶ Often not very good
▶ No pairwise dependencies
▶ May lead to overfitting
▶ Only nominal features

▶ Variants exist

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 20 / 39

Evaluation (again)

Section 2

Evaluation (again)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 21 / 39

Evaluation (again)

Evaluation (again)
Precision and Recall

▶ Accuracy is a single number for the entire classification
▶ Do some of the classes fare better than others?
▶ There are two metrics for this: Precision and Recall

▶ Both are calculated per class (and can be averaged again)

all items

gold: c system: c

Figure: Identifying true/false positives/negatives

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 22 / 39

Evaluation (again)

Evaluation (again)
Precision and Recall

▶ Accuracy is a single number for the entire classification
▶ Do some of the classes fare better than others?
▶ There are two metrics for this: Precision and Recall

▶ Both are calculated per class (and can be averaged again)

all items

gold: c system: c

true
positives

true negatives

Figure: Identifying true/false positives/negatives

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 22 / 39

Evaluation (again)

Evaluation (again)
Precision and Recall

▶ Accuracy is a single number for the entire classification
▶ Do some of the classes fare better than others?
▶ There are two metrics for this: Precision and Recall

▶ Both are calculated per class (and can be averaged again)

all items

gold: c system: c

true
positives

true negatives

false
positives

false
negatives

Figure: Identifying true/false positives/negatives

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 22 / 39

Evaluation (again)

Evaluation
Precision and Recall

all items

gold: c system: c

true
positives

true negatives

false
positives

false
negatives

true positives Correctly identified items of class c

true negatives Correctly identified items of other classes

false positives System predicts c, but it’s another class

false negatives System predicts something else, but it’s c

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 23 / 39

Evaluation (again)

Evaluation
Precision and Recall

all items

gold: c system: c

true
positives

false
positives

false
negatives

precision Howmany of the items predicted as c are actually correct?
P = tp

tp+fp

recall Howmany of the items that are c are actually identified?
R = tp

tp+fn

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 24 / 39

Evaluation (again)

Evaluation
Precision and Recall

all items

gold: c system: c

true
positives

false
positives

false
negatives

precision Howmany of the items predicted as c are actually correct?
P = tp

tp+fp

recall Howmany of the items that are c are actually identified?
R = tp

tp+fn

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 24 / 39

Evaluation (again)

Evaluation
Precision and Recall

precision Howmany of the items predicted as c are actually correct?

recall Howmany of the items that are in class c are actually found
by the system?

▶ Precision and recall measure different kinds of errors the systems
make
▶ Precision errors are often easier to spot for humans
▶ Recall errors are hurtful, if only instances of one class are looked at or

analyzed – missing instances will never be found

▶ Average P/R values over all classes are often given
▶ Sometimes combined into an f1-score

▶ f1 = 2 precision∗recall
precision+recall▶ ‘harmonic mean’ between the two

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 25 / 39

Naive Bayes

Section 3

Naive Bayes

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 26 / 39

Naive Bayes

Naive Bayes
Prediction Model

▶ Probabilistic model
(i.e., takes probabilities into account)

▶ Probabilities are estimated on training data (relative frequencies)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 27 / 39

Naive Bayes

Naive Bayes
Prediction Model

prediction(x) = argmax
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

(i.e., we calculate the probability for each possible class c, given the
feature values of the item x, and we assign most probably class)
In our case:

prediction(x) = argmax
c∈{♣♠♡♢}

p(c|f1(x), f2(x), . . . , fn(x))

▶ argmax: Select the argument that maximizes the expression
▶ How exactly do we calculate p(c|f1(x), f2(x), . . . , fn(x))?

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 28 / 39

Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =

p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)
Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 29 / 39

Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =
p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)
Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 29 / 39

Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =
p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)
Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 29 / 39

Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =
p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)

Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 29 / 39

Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =
p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)
Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)

prediction(x) = argmax
c∈C

p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 29 / 39

Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =
p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . . p(c)
Nowwe assume feature independence

= p(f1|c)p(f2|t) . . . p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . . p(c)

How do we get p(fi(x)|c)? This is what the model has stored!

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 29 / 39

Naive Bayes

Naive Bayes
Learning Algorithm

▶ Very simple
1. For each feature fi ∈ F

▶ Count frequency tables from the training set:

C (classes)
c1 c2 … cm

v(fi)

a 3 2 …
b 5 7 …
c 0 1 …∑

8 10

2. Calculate conditional probabilities
▶ Divide each number by the sum of the entire column
▶ E.g., p(a|c1) = 3

3+5+0 p(b|c2) = 7
2+7+1

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 30 / 39

Naive Bayes

Naive Bayes – Example Task
Feature f1: Number?

C (classes)
♣ ♠ ♡ ♢

v(f1)

y 1 0 3 4
n 0 4 0 0∑

1 4 3 4

p(f1 = y|♠) = 0 p(f1 = n|♠) = 1
p(f1 = y|♢) = 1 p(f1 = n|♢) = 0

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 31 / 39

Naive Bayes

Naive Bayes – Example Task
Feature f2: Color?

C (classes)
♣ ♠ ♡ ♢

v(f2)

b 0 0 3 4
r 1 4 0 0∑

1 4 3 4

p(f2 = r|♠) = 0 p(f2 = b|♠) = 1
p(f2 = r|♢) = 1 p(f2 = b|♢) = 0

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 32 / 39

Naive Bayes

Naive Bayes – Example Task
Feature f3: Odd/Even/Face?

C (classes)
♣ ♠ ♡ ♢

v(f3)

o 1 0 3 3
e 0 0 0 1
f 0 4 0 0∑

1 4 3 4

p(f3 = o|♠) = 0 p(f3 = e|♠) = 0 p(f3 = f|♠) = 1

p(f3 = o|♢) = 3
4 p(f3 = e|♢) = 1

4 p(f3 = f|♢) = 0

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 33 / 39

Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(K♠) = argmax
c∈{♠♣♡♢}

p(c|n, b, f)

p(♣|n, b, f) = p(f1 = n|♣) ∗ p(f2 = b|♣) ∗ p(f3 = f|♣)
= 0

p(♡|n, b, f) = p(f1 = n|♡) ∗ p(f2 = b|♡) ∗ p(f3 = f|♡)
= 0

p(♠|n, b, f) = p(f1 = n|♠) ∗ p(f2 = b|♠) ∗ p(f3 = f|♠)
= 1 ∗ 1 ∗ 1 = 1

We predict♠

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 34 / 39

Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(6♢) = argmax
c∈{♠♣♡♢}

p(c|y, r, e)

p(♣|y, r, e) = p(f1 = y|♣) ∗ p(f2 = r|♣) ∗ p(f3 = e|♣)
= 0

p(♡|y, r, e) = p(f1 = y|♡) ∗ p(f2 = r|♡) ∗ p(f3 = e|♡)
= 1 ∗ 1 ∗ 0 = 0

p(♢|y, r, e) = p(f1 = y|♢) ∗ p(f2 = r|♢) ∗ p(f3 = e|♢)

= 1 ∗ 1 ∗ 1
4 =

1
4

We predict♢

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 35 / 39

Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(K♢) = argmax
c∈{♠♣♡♢}

p(c|n, r, f)

p(♣|n, r, f) = p(f1 = y|♣) ∗ p(f2 = r|♣) ∗ p(f3 = e|♣)
= 0

p(♡|n, r, f) = p(f1 = y|♡) ∗ p(f2 = r|♡) ∗ p(f3 = e|♡)
= 0

p(♢|n, r, f) = p(f1 = y|♢) ∗ p(f2 = r|♢) ∗ p(f3 = e|♢)
= 0

Oops, all probabilities are zero

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 36 / 39

Naive Bayes

Naive Bayes
Smoothing

▶ Whenever multiplication is involved, zeros are dangerous
▶ Smoothing is used to avoid zeros
▶ Different possibilities
▶ Simple: Add something to the probabilities

▶ xi+a
N+ad

▶ E.g., p(f3 = e|♠) = 0+1
4+1∗4

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 37 / 39

Naive Bayes

Naive Bayes

▶ ‘Naive’: Assuming feature independence is usually wrong
▶ Even in our toy example, f1 and f3 are highly dependent

▶ Pros
▶ Easy to implement, fast
▶ Small models

▶ Cons
▶ Naive: Feature dependence not modeled
▶ Fragile for unseen data (without smoothing)

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 38 / 39

Naive Bayes

References I

Shannon, Claude E. “A mathematical theory of communication”. In: The
Bell System Technical Journal 27.3 (July 1948), pp. 379–423.

Nils Reiter (CRETA) Machine Learning Algorithms September 26-27, 2018 39 / 39

	Decision Trees
	Evaluation (again)
	Naive Bayes
	References

