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Using Machine Learning at Home

Using Machine Learning at Home
The Task

What kind of problem do you want to solve?
▶ Classification: Items to classes
▶ Sequence labeling: Sequential items to classes

▶ By taking previous decisions into account
▶ Used in many NLP tasks!

▶ Regression: Predict numeric values
▶ Clustering: Data exploration
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Using Machine Learning at Home

Using Machine Learning at Home
The Classes

What are the classes?
▶ Can humans distinguish between them clearly?
▶ Are there more training instances than classes?
▶ How specific are the classes to one document/data set?

▶ Can we learn something generic from them?

▶ How are they distributed in the data/in the world?
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Using Machine Learning at Home

Using Machine Learning at Home
The Data

▶ How large is the data set?
▶ Is it representative of the real world?
▶ Is it representative for the application?
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Using Machine Learning at Home

Using Machine Learning at Home
The Features

Which features to use?
▶ Features need to be

▶ Relevant for the target category
▶ Your own judgement
▶ Data analysis on a data sample: Association

▶ Applicable to large portions of the instances
▶ Extractable from the instances

▶ Howmuch time do you have?
▶ Howmuch preprocessing can you afford?
▶ How reliable is the preprocessing?

▶ Extracting features: Main task for you
▶ You’ll have to write code
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Using Machine Learning at Home Processing Text

Processing Text

▶ Languages are different
▶ German vs. English vs. Chinese

▶ Text types are different
▶ Newspaper vs. blog vs. scientific articles

▶ Domains are different
▶ Business vs. sports

Processing Text
Differences are different
▶ Domain: Vocabulary
▶ Text types: Vocabulary, syntax, perspective, …
▶ Language: Syntax, vocabulary, semantics, sign systems, …
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Using Machine Learning at Home Processing Text

Processing Text
Ambiguity

Time flies like an arrow

▶ Texts/sentences/words can be ambiguous
▶ Howmany different meanings does the sentence have?
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Using Machine Learning at Home Processing Text

Processing Text
Ambiguity

Angela saw the man with the binocular

▶ Ambiguity reflected in different syntactic readings
▶ PP attachment ambiguity

▶ ‘see with the binocular’
▶ ‘man with the binocular’
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Using Machine Learning at Home Processing Text

Processing Text
Processing text is hard

▶ NLP tools (e.g., Stanford Core NLP)
▶ almost always supervised
▶ trained on newspaper/Wikipedia/social media

▶ This may be what you need, but there’s no guarantee.

▶ Tools focus on linguistic layers (e.g., parts of speech or coreference)
▶ Dependencies between layers exist!
▶ PoS tagging errors lead to subsequent errors

▶ This gap can be large Reiter (2014)

▶ Technical text quality matters
▶ ‘Garbage in, garbage out’
▶ OCR is not perfect
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Supervised vs. Unsupervised

Supervised vs. Unsupervised
Two strains of machine learning

Supervised Learning

▶ Goal: Replicate the gold standard
▶ Known classes
▶ Models trained on training data

→ Classification

Unsupervised Learning

▶ Goal: Identify groups of ‘similar’ items, similarity measured via
features
▶ Data exploration

▶ No gold standard, no training data

→ Clustering
▶ Results not necessarily interpretable for humans!
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Data & Annotation

Section 3
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Data & Annotation

Data

▶ Supervised ML needs (training/testing) data
▶ For text: Annotations!

▶ Corpus annotation
▶ Tradition/established in computational linguistics
▶ Explicitly marked linguistic categories

▶ e.g., parts of speech (verb/noun/adjective/…)
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Data & Annotation

Getting Annotated Corpora

▶ LDC: Linguistic Data Consortium
▶ https://www.ldc.upenn.edu
▶ Intransparent business model …

▶ ELDA: European Language Resources Association
▶ http://www.elra.info

▶ Open Access
▶ Oxford Text Archive: http://ota.ox.ac.uk
▶ Deutsches Textarchiv: http://www.deutschestextarchiv.de
▶ TextGrid Repository: https://textgridrep.org
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Data & Annotation Creating Annotated Corpora

Creating Annotated Corpora

▶ Non-trivial
▶ Difficult decisions
▶ Large list of special cases, exceptions

▶ Expensive
▶ Multiple annotators
▶ Supervision

▶ Time-consuming
▶ Concentration fades quickly

⇒ Annotated data is valuable
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Data & Annotation Creating Annotated Corpora

Creating Annotated Corpora
Best Practice

▶ Annotation guidelines mediate between theory and annotators
▶ Not every annotator needs to be an export on syntactic theory

▶ Parallel annotation: Multiple annotators annotate the same text
▶ Allows estimation of annotation quality
▶ Regularly measure inter-annotator agreement

▶ Iteratively improve the annotation guidelines
▶ This might invalidate previous annotations!
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Data & Annotation Creating Annotated Corpora

Annotation Guidelines
▶ Mediator between theory and annotations
▶ Applicability is important

▶ Self-contained
▶ Clarity
▶ Work of reference
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Figure: Part of Speech Guidelines used in the Penn Treebank
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Data & Annotation Inter-Annotator Agreement

Inter-Annotator Agreement
Motivation

▶ IAA expresses agreement between annotators/raters quantitatively
▶ Often used as an upper bound in NLP:

Computers can’t be expected to perform better than human
agreement

▶ Annotations with high IAA are considered more reliable
▶ Sometimes used to steer guideline/resource development

▶ ‘90% solution’: Remove word senses for which annotators achieve less
than 90% Hovy et al. (2006)

▶ Corpus releases should be accompanied by IAA values, to allow
estimation of annotation quality
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Data & Annotation Inter-Annotator Agreement

Inter-Annotator Agreement
Different Metrics

▶ Not all annotation tasks are the same
▶ PoS tagging: Assign each word to a category

▶ Only categorizing
▶ Sentence splitting: Mark sentence boundaries

▶ Only unitizing
▶ Named entities: Select a span and assign it to a category

▶ Unitizing, categorizing

▶ Different metrics for different tasks!
Cohen 1960; Fleiss 1971; Fournier and Inkpen 2012; Mathet et al. 2015
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Data & Annotation Inter-Annotator Agreement

Inter-Annotator Agreement
Different Metrics: Common Properties

▶ All metrics incorporate observed and expected agreement
▶ Observed agreement: Extracted from the annotations
▶ Expected agreement: Agreement to be expected by chance

annotations
▶ Indicates difficulty of the annotation task
▶ Allows comparing agreement values with different numbers of

categories!

Inter-Annotator Agreement
Expected Agreement

If two annotators assign word classes (noun, verb,
adjective, other) by throwing a 4-sided die, they achieve a
certain level of agreement (this is a categorization task).
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Data & Annotation Annotation Workflow

Annotation Workflow
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Resources
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Resources

Using Machine Learning at Home
Processing Text

Supervised vs. Unsupervised

Data & Annotation
Creating Annotated Corpora
Inter-Annotator Agreement
Annotation Workflow

Resources
Continue Learning
Start Coding
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Resources Continue Learning

Continue Learning

▶ Coursera online course
▶ Andrew Ng, Stanford University
▶ https://www.coursera.org/learn/machine-learning
▶ Lecture and exercises, generic (not only text/language)

▶ Books
▶ Christopher D. Manning and Hinrich Schütze. Foundations of Statistical

Natural Language Processing. Cambridge, Massachusetts and London,
England: MIT Press, 1999

▶ I. H. Witten and Eibe Frank. Data Mining. 2nd ed. Practical Machine
Learning Tools and Techniques. Elsevier, Sept. 2005

▶ Dan Jurafsky and James H. Martin. Speech and Language Processing.
2nd. Prentice Hall, 2008
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Resources Start Coding

Start Coding

▶ You do not have to implement everything by yourself
▶ Frameworks and APIs are faster, more tested, better documented

▶ Python
▶ Natural Language Toolkit (NLTK): https://www.nltk.org
▶ scikit-learn http://scikit-learn.org/
▶ Industrial-Strength NLP https://spacy.io

▶ Java
▶ Weka https://www.cs.waikato.ac.nz/ml/weka/
▶ Mallet http://mallet.cs.umass.edu
▶ Apache UIMA http://uima.apache.org
▶ ClearTk http://cleartk.github.io/cleartk/

▶ R
▶ caret https://topepo.github.io/caret/
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